63 research outputs found

    Rapid Accumulation of CD14+CD11c+ Dendritic Cells in Gut Mucosa of Celiac Disease after in vivo Gluten Challenge

    Get PDF
    Of antigen-presenting cells (APCs) expressing HLA-DQ molecules in the celiac disease (CD) lesion, CD11c(+) dendritic cells (DCs) co-expressing the monocyte marker CD14 are increased, whereas other DC subsets (CD1c(+) or CD103(+)) and CD163(+)CD11c(-) macrophages are all decreased. It is unclear whether these changes result from chronic inflammation or whether they represent early events in the gluten response. We have addressed this in a model of in vivo gluten challenge.Treated HLA-DQ2(+) CD patients (n = 12) and HLA-DQ2(+) gluten-sensitive control subjects (n = 12) on a gluten-free diet (GFD) were orally challenged with gluten for three days. Duodenal biopsies obtained before and after gluten challenge were subjected to immunohistochemistry. Single cell digests of duodenal biopsies from healthy controls (n = 4), treated CD (n = 3) and untreated CD (n = 3) patients were analyzed by flow cytometry.In treated CD patients, the gluten challenge increased the density of CD14(+)CD11c(+) DCs, whereas the density of CD103(+)CD11c(+) DCs and CD163(+)CD11c(-) macrophages decreased, and the density of CD1c(+)CD11c(+) DCs remained unchanged. Most CD14(+)CD11c(+) DCs co-expressed CCR2. The density of neutrophils also increased in the challenged mucosa, but in most patients no architectural changes or increase of CD3(+) intraepithelial lymphocytes (IELs) were found. In control tissue no significant changes were observed.Rapid accumulation of CD14(+)CD11c(+) DCs is specific to CD and precedes changes in mucosal architecture, indicating that this DC subset may be directly involved in the immunopathology of the disease. The expression of CCR2 and CD14 on the accumulating CD11c(+) DCs indicates that these cells are newly recruited monocytes

    Gut tissue-resident memory T cells in coeliac disease

    No full text
    This mini-review describes observations of the 1990ies with culturing of gluten-specific and astrovirus-specific CD4+ T cells from duodenal biopsies from subjects who presumably had a long time between the exposure to gluten or astrovirus antigens and the sampling of the biopsy. In these studies, it was also observed that antigen-specific CD4+ T cells migrated out of the gut biopsies during overnight culture. The findings are suggestive of memory T cells in tissue which are resident, but which also can be mobilised on antigen stimulation. Of note, these findings were made years before the term tissue-resident memory T cells was invoked. Since that time, many observations have accumulated on these gut T cells, particularly the gluten-specific T cells, and we have insight into the turnover of CD4+ T cells in the gut lamina propria. These data make it evident that human antigen-specific CD4+ T cells that can be cultured from gut biopsies indeed are bone fide tissue-resident memory T cells

    The roles of MHC class II genes and post-translational modification in celiac disease

    No full text
    Our increasing understanding of the etiology of celiac disease, previously considered a simple food hypersensitivity disorder caused by an immune response to cereal gluten proteins, challenges established concepts of autoimmunity. HLA is a chief genetic determinant, and certain HLA-DQ allotypes predispose to the disease by presenting posttranslationally modified (deamidated) gluten peptides to CD4+ T cells. The deamidation of gluten peptides is mediated by transglutaminase 2. Strikingly, celiac disease patients generate highly disease-specific autoantibodies to the transglutaminase 2 enzyme. The dual role of transglutaminase 2 in celiac disease is hardly coincidental. This paper reviews the genetic mapping and involvement of MHC class II genes in disease pathogenesis, and discusses the evidence that MHC class II genes, via the involvement of transglutaminase 2, influence the generation of celiac disease-specific autoantibodies. This is a post-peer-review, pre-copyedit version of an article published in Immunogenetics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00251-017-0985-

    Single-cell approaches to dissect adaptive immune responses involved in autoimmunity: the case of celiac disease

    No full text
    Single-cell analysis is a powerful technology that has found widespread use in recent years. For diseases with involvement of adaptive immunity, single-cell analysis of antigen-specific T cells and B cells is particularly informative. In autoimmune diseases, the adaptive immune system is obviously at play, yet the ability to identify the culprit T and B cells recognizing disease-relevant antigen can be difficult. Celiac disease, a widespread disorder with autoimmune components, is unique in that disease-relevant antigens for both T cells and B cells are well defined. Furthermore, the celiac disease gut lesion is readily accessible allowing for sampling of tissue-resident cells. Thus, disease-relevant T cells and B cells from the gut and blood can be studied at the level of single cells. Here we review single-cell studies providing information on such adaptive immune cells and outline some future perspectives in the area of single-cell analysis in autoimmune diseases

    Immunoglobulin germline gene variation and its impact on human disease

    No full text
    Immunoglobulins (Ig) play an important role in the immune system both when expressed as antigen receptors on the cell surface of B cells and as antibodies secreted into extracellular fluids. The advent of high-throughput sequencing methods has enabled the investigation of human Ig repertoires at unprecedented depth. This has led to the discovery of many previously unreported germline Ig alleles. Moreover, it is becoming clear that convergent and stereotypic antibody responses are common where different individuals recognise defined antigenic epitopes with the use of the same Ig V genes. Thus, germline V gene variation is increasingly being linked to the differential capacity of generating an effective immune response, which might lead to varying disease susceptibility. Here, we review recent evidence of how germline variation in Ig genes impacts the Ig repertoire and its subsequent effects on the adaptive immune response in vaccination, infection, and autoimmunity

    C-type lectin-like CD161 is not a co-signalling receptor in gluten-reactive CD4 + T cells

    No full text
    C‐type lectin‐like CD161, a class II transmembrane protein, is a surface receptor expressed by NK cells and T cells. In coeliac disease, CD161 was expressed more frequently on gluten‐reactive CD4 + T cells compared to other memory CD4 + T cells isolated from the same tissue compartment. CD161 is a putative co‐signalling molecule that was proposed to act as co‐stimulatory receptor in the context of signalling through TCR, but contradicting results were published. In order to understand the role of CD161 in gluten‐reactive CD4 + T cells, we combined T cell stimulation assays or T cell proliferation assays with ligation of CD161 and intracellular cytokine staining. We found that CD161 ligation provided neither co‐stimulatory nor co‐inhibitory signals to modulate proliferation and IFN‐γ or IL‐21 production by gluten‐reactive CD4 + T cell clones. Thus, we suggest that CD161 does not function as a co‐signalling receptor in the context of gluten‐reactive CD4 + T cells

    Therapeutic and Diagnostic Implications of T Cell Scarring in Celiac Disease and Beyond

    No full text
    Few therapeutic and diagnostic tools specifically aim at T cells in autoimmune disorders, but are T cells a narrow target in these diseases? Lessons may be learned from celiac disease (CeD), one of the few autoimmune disorders where the T cell driving antigens are known, i.e. dietary gluten proteins. T cell clonotypes specific to gluten are expanded, persist for decades and express a distinct phenotype in CeD patients. Cells with this phenotype are increased also in other autoimmune conditions. Accordingly, disease-specific CD4+ T cells form an immunological scar in CeD and probably other autoimmune disorders. We discuss approaches how such T cells may be targeted for better treatment and diagnosis via their antigen specificity or via their expression of characteristic phenotypic markers

    Gluten-specific antibodies of celiac disease gut plasma cells recognize long proteolytic fragments that typically harbor T-cell epitopes

    Get PDF
    This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells

    Igs as substrates for transglutaminase 2: Implications for autoantibody production in celiac disease

    No full text
    Autoantibodies specific for the enzyme transglutaminase 2 (TG2) are a hallmark of the gluten-sensitive enteropathy celiac disease. Production of the Abs is strictly dependent on exposure to dietary gluten proteins, thus raising the question how a foreign Ag (gluten) can induce an autoimmune response. It has been suggested that TG2-reactive B cells are activated by gluten-reactive T cells following receptor-mediated uptake of TG2-gluten complexes. In this study, we propose a revised model that is based on the ability of the BCR to serve as a substrate to TG2 and become cross-linked to gluten-derived peptides. We show that TG2-specific IgD molecules are preferred in the reaction and that binding of TG2 via a common epitope targeted by cells using the IgH variable gene segment (IGHV)5-51 results in more efficient cross-linking. Based on these findings we hypothesize that IgD-expressing B cells using IGHV5-51 are preferentially activated, and we suggest that this property can explain the previously reported low number of somatic mutations as well as the overrepresentation of IGHV5-51 among TG2-specific plasma cells in the celiac lesion. The model also couples gluten peptide uptake by TG2-reactive B cells directly to peptide deamidation, which is necessary for the activation of gluten-reactive T cells. It thereby provides a link between gluten deamidation, T cell activation, and the production of TG2-specific Abs. These are all key events in the development of celiac disease, and by connecting them the model may explain why the same enzyme that catalyzes gluten deamidation is also an autoantigen, something that is hardly coincidental. The final version of this research has been published in Journal of Immunology. Š 2015 American Association of Immunologist
    • …
    corecore